
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WINDOWS MEMORY FORENSIC DATA VISUALIZATION 

 

 

THESIS 

 

J. Brendan Baum, Civilian, USAF 

 

AFIT-ENG-T-14-J-1 

 

 

 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 

 

 

DISTRIBUTION STATEMENT A: 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the United 

States Government.   

 

This material is declared a work of the U.S. Government and is not subject to copyright 

protection in the United States.



 

 

AFIT-ENG-T-14-J-1 

 

 

WINDOWS MEMORY FORENSIC DATA VISUALIZATION 

 

 

THESIS 

 

Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Cyber Operations 

 

 

J. Brendan Baum, B.S. 

Civilian, USAF 

 

June 2014 

DISTRIBUTION STATEMENT A 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



 

 

AFIT-ENG-T-14-J-1 

 

WINDOWS MEMORY FORENSIC DATA VISUALIZATION 

 

 

 

 

J. Brendan Baum, B.S. 

Civilian, USAF 

 

 

 

 

 

 

 

Approved: 

 

 

 

 

//signed//  28 May 2014 

Gilbert L. Peterson, PhD (Chairman) Date 

 

 

//signed// 28 May 2014 

Barry E. Mullins, PhD (Member)  Date 

 

 

//signed// 28 May 2014 

Timothy H. Lacey, PhD (Member)  Date 

 

 

 

 



 

iv 

 

AFIT-ENG-T-14-J-1 

 

Abstract 

 Modern criminal investigators face an increasing number of computer-related 

crimes that require the application of digital forensic science. The major challenge facing 

digital forensics practitioners is the complicated task of acquiring an understanding of the 

digital data residing in electronic devices. Currently, this task requires significant 

experience and background to correctly aggregate the data their tools provide from the 

digital artifacts. Most of the tools available present their results in text files or tree lists. It 

is up to the practitioner to mentally capture a global understanding of the state of the 

device at the time of seizure and find the items of evidentiary interest. This research 

focuses on the application of Information Visualization techniques to improve the 

analysis of digital forensic evidence from Microsoft Windows memory captures. The 

visualization tool developed in this work presents both global and local views of the 

evidence based on user interactions with the graphics. The resulting visualizations 

provide the necessary details for verifying digital artifacts and assists in locating 

additional items of relevance. This proof-of-concept model can be modified to support 

various digital forensic target platforms including Mac OS X, Linux, and Android. 

 



 

v 

Acknowledgments 

I would like to express my sincere appreciation to my faculty advisor, Dr. Gilbert 

Peterson, for providing the idea for this thesis and for his guidance and support 

throughout.  It would not have been possible to complete this research without his 

assistance and dedicated involvement throughout the entire process. 

 

 

       J. Brendan Baum 

 

 



 

vi 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Table of Contents ............................................................................................................... vi 

List of Figures .................................................................................................................. viii 

List of Tables .......................................................................................................................x 

I. Introduction ..................................................................................................................1 

1.1 Problem Overview...............................................................................................2 

1.2 Research Motivation ...........................................................................................3 

1.3 Research Objectives ............................................................................................3 
1.4 Methodology .......................................................................................................4 
1.5 Research Implications .........................................................................................5 

1.6 Summary .............................................................................................................5 

II. Literature Review .........................................................................................................7 

2.1 Digital Forensics .................................................................................................7 

2.2 Sources of Digital Evidence ................................................................................9 

2.3 Volatile Memory Forensics ...............................................................................10 
2.4 Memory Acquisition .........................................................................................10 
2.5 Memory Dump Extraction Tools ......................................................................12 

2.6 Forensic Data Analysis......................................................................................17 
2.7 Visualization Tools ...........................................................................................21 

2.8 Summary ...........................................................................................................25 

III. Methodology ................................................................................................................27 

3.1 Research Objectives ..........................................................................................27 

3.2 Assumptions ......................................................................................................28 
3.3 System Design ...................................................................................................28 

3.4 Visualization Tool Functionality .......................................................................37 
3.5 Summary ...........................................................................................................44 

IV. Analysis and Results ....................................................................................................45 

4.1 Goal 1: Global View of Data from Memory Analysis Tools ............................45 
4.2 Goal 2: Filter Data and Display Relationships ..................................................47 

4.3 Goal 3: Assist in Identifying New Data and Patterns........................................47 



 

vii 

Page 

4.4 Summary ...........................................................................................................80 

V.  Conclusions and Recommendations ............................................................................81 

5.1 Research Accomplishments ..............................................................................81 
5.2 Future Work ......................................................................................................82 

Bibliography ......................................................................................................................86 

 



 

viii 

List of Figures 

Figure Page 

1. Digital Forensic Process ............................................................................................... 8 

2. Volatility Command Prompt in Windows .................................................................. 15 

3. CMAT Command Prompt in Windows ..................................................................... 16 

4. CMAT Feature File Contents ..................................................................................... 17 

5. EIC Process Flowchart ............................................................................................... 20 

6. Co-Appearance of Characters in Les Miserables ....................................................... 21 

7. Twitter Network Visualization ................................................................................... 22 

8. Bubble Chart of D3 Homepage .................................................................................. 23 

9. 2012 Political Contributions Visualization ................................................................ 24 

10. NASDAQ Interactive Chart ....................................................................................... 25 

11. Forensic Memory Analysis Process ........................................................................... 28 

12. Tasklist Command-Line Output ................................................................................. 32 

13. Visualization Tool Sequence Diagram ....................................................................... 34 

14. Visualization Interface Layout ................................................................................... 35 

15. Visualization Region Components ............................................................................. 36 

16. Expanded Resource Arc – Sockets List ..................................................................... 39 

17. Process Bubble Selected – Resource Arcs Filtered .................................................... 40 

18. Resource Slice Selected – Associated Process Nodes Highlighted ........................... 41 

19. Apply Resource Filter Button Selected ...................................................................... 42 

20. Links Displayed – Sockets List Expanded ................................................................. 43 

21. Overall System View ................................................................................................. 46 

22. Visualization filtered for single process ..................................................................... 48 

23. Visualization filtered for single resource ................................................................... 49 

24. IE – Sockets List Links .............................................................................................. 51 

25. IE – Ports List Links .................................................................................................. 52 

26. IE – Loaded Modules (.exe) Links ............................................................................. 53 

27. Chrome – Sockets List Links ..................................................................................... 55 



 

ix 

Figure Page 

28. Chrome – Ports List Links ......................................................................................... 56 

29. Chrome – Loaded Modules (.exe) Links .................................................................... 57 

30. Firefox – Sockets List Links ...................................................................................... 59 

31. Firefox – Ports List Links .......................................................................................... 60 

32. Firefox – Loaded Modules (.exe) Links ..................................................................... 61 

33. Solitaire – Sockets List Links .................................................................................... 63 

34. Solitaire – Loaded Modules (.exe) Links ................................................................... 64 

35. Word – Process Highlighted ...................................................................................... 66 

36. Word –Files List ......................................................................................................... 67 

37. Malware 1 – Sockets List Links ................................................................................. 69 

38. Malware 1 – Loaded Modules (.exe) Links ............................................................... 70 

39. Malware 2 – Sockets List Links ................................................................................. 72 

40. Malware 2 – Ports List Links ..................................................................................... 73 

41. Malware 2 – Loaded Modules (.exe) Links ............................................................... 74 

42. Malware 3 – Sockets List Links ................................................................................. 76 

43. Malware 3 – Ports List Links ..................................................................................... 77 

44. Malware 3 – Loaded Modules (.exe) Links ............................................................... 78 

45. Solitaire – MSMSGS.EXE process highlighted .......................................................... 79 

46. Windows 7 Dataset Visualization .............................................................................. 84 

47. Android 4.3 Dataset Visualization (Prototype) .......................................................... 85 

  



 

x 

List of Tables 

Table Page 

1. Seven Tasks for Information Visualization .................................................................. 3 

2. Volatility (2.3.1) Modules for Windows .................................................................... 14 

3. CMAT Output Feature Files ................................... 1Error! Bookmark not defined.6 

4. Test Machine Configurations ..................................................................................... 30 

5. Volatility Plugins Executed on Test Images .............................................................. 31 

6. Visualization Tool Source Files ................................................................................. 33 

 

 



 

1 

WINDOWS MEMORY FORENSIC DATA VISUALIZATION 

 

I. Introduction 

Criminal investigations in the modern era frequently involve digital forensic 

science to analyze potential digital evidence obtained from electronic devices. The 

Federal Bureau of Investigation (FBI) regularly investigates offenses such as Computer 

and Network Intrusions, Identity Theft, as well as cases involving Child Pornography 

(FBI, 2014). As computer technology advances, devices continue to increase their storage 

capacity and processing power effectively enlarging digital forensic evidence collections. 

Research by Beebe and Clark (2005) calls for improvement to the digital investigation 

process citing the rising temporal factor associated with digital evidence analysis. Data 

mining techniques involving predictive modeling and content retrieval are discussed as 

potential enhancements to the analysis process. Data mining employs methods from 

various fields including artificial intelligence, machine learning, pattern recognition, and 

data visualization (Beebe & Clark, 2005). 

The applied science of Information Visualization offers unique solutions for 

gaining an intuitive understanding of large and complex datasets. Information 

Visualization (InfoVis) methods have led to innovative problem solving in numerous 

fields including medicine (Faisal, et al, 2013), business, and computer science (Liu, et al, 

2014). Such methods could provide a fresh approach for Digital Forensic Analysts 

tackling the complexity of understanding large datasets. 

Keim (2002) points out the significance of involving human interaction in the data 

exploration process by blending “the flexibility, creativity, and general knowledge of the 



 

2 

human with the enormous storage capacity and the computational power of today’s 

computers.” An advantage to employing a visual approach to analysis lies in the fact that 

exploration is instinctive. The human user (analyst) does not need to grasp complex 

mathematical or statistical concepts to successfully locate data of interest (Keim, 2002). 

1.1 Problem Overview 

The constant increase in electronic device storage capacity results in greater 

workloads for forensic analysts which expands the target space containing relevant digital 

evidence. Consequently the time required to properly analyze the collected data, identify 

relevant digital artifacts, and extract digital evidence increases exponentially. In 

summary, investigators face an uphill battle due to the substantial increase in the size of 

individual digital forensic data collections. The added complexity increases the time 

required to complete forensic analysis using traditional methods.  

Although the majority of investigatory efforts focus on the data in disk storage, 

information recovered from volatile memory can provide unique insight into the state of 

the device at the time of acquisition (Cai, et al, 2013). Data regarding open ports and 

sockets provides an examiner with the state of network communications on the target 

system. The listing of open file handles and system registry keys relates the various 

resources in disk storage accessed by each system process. Knowledge of the resources 

associated with a particular process can assist in identifying key data being exfiltrated by 

malware on an infected system. 



 

3 

1.2 Research Motivation 

 The motivation behind this research stems from the growing need to develop 

innovative methods to aid in digital forensic analysis. One proposed method involves the 

application of Information Visualization techniques to provide a unique perspective on 

collection datasets (Osborne, 2012). According to Osborne, InfoVis tools have the 

potential to “aid in the discovery of new pieces of information, decision-making based on 

data, and to provide explanation of certain phenomena existent within the data set.” 

1.3 Research Objectives 

The overall goal of this research is to develop a proof-of-concept interactive 

visualization for analysis of forensic memory images. Shneiderman (1996) outlines seven 

tasks for developing Information Visualization tools listed in Table 1. 

Table 1. Seven Tasks for Information Visualization (Shneiderman, 1996). 

Task Description 

Overview Gain an overview of the entire collection. 

Zoom Zoom in on items of interest. 

Filter Filter out uninteresting items. 

Details-on-Demand Select an item or group and get details when needed. 

Relate View relationships among items. 

History 
Keep a history of actions to support undo, replay, and progressive 

refinement. 

Extract Allow extraction of sub-collections and of the query parameters. 

 

The specific objectives for this research are derived from this list and outlined as follows: 



 

4 

1. The visualization tool should provide an interactive global view of the data 

output from forensic memory image analysis tools. 

2. The visualization tool should have the ability to filter the datasets for a 

particular system and visually represent the following associations: 

 The relationship between each process and its associated resources. 

 The relationship between a system resource and its associated 

processes. 

3. The visualization tool should assist the user in locating unique patterns and 

information of relevance within the datasets. 

1.4 Methodology 

Chapter 3 presents the process for obtaining forensic memory captures from 

Windows machines and the methodology for extracting digital artifacts from forensic 

memory captures. The two types of malware implemented on the test machines are 

discussed on a behavioral level. The second part of the chapter presents a functional 

overview of the developed visualization tool interface. The basic features of the software 

are discussed which include the global system view and the local view of the system 

which is obtained through user interactions. The last feature of the visualization tool 

involves the addition of visual links to connect resources and associated processes to 

assist the user in locating unique patterns and information of significance within the 

digital forensic dataset. 

Chapter 4 describes the application of the developed visualization tool to eight 

test datasets acquired from Windows XP forensic memory images. The images include 



 

5 

five trusted images and three images infected with a form of malware. The visual results 

from each of the datasets are analyzed and evaluated against the research objectives to 

verify whether each of the three goals is successfully met. 

1.5 Research Implications 

This thesis study is unique because there has been very little published regarding 

the application of Information Visualization techniques to Digital Forensic Analysis, 

particularly in the sub-field of Memory Forensics. The visualization tool developed 

through this research is shown to provide a level of assistance in the recognition of 

existing patterns and the discovery of significant items within the test datasets. 

Visualization could lead to an entirely fresh approach for Digital Forensic Investigations 

by empowering digital forensic practitioners with the ability to quickly perform analysis 

and gain an intuitive understanding of the target system at the time of seizure. 

1.6 Summary 

 This chapter discusses the challenges facing digital forensic investigators 

concerning the rising time frames required to analyze collection datasets that continue to 

grow in size and complexity. The problem overview is stated including the importance of 

volatile memory analysis. The research motivation describes the need to develop 

innovative methods to assist investigators in the digital forensic analysis process. An 

Information Visualization approach is selected as a means of improving the digital 

forensic process. Three specific objectives for the research are listed and a basic 

methodology is outlined. 



 

6 

Chapter 2 provides an overview of the digital forensic investigation process and 

introduces the subfield of Forensic Memory Analysis. The chapter also presents the 

significance of memory analysis, image acquisition methods, and memory analysis tools. 

The subject of Information Visualization is explored as a possible solution for 

overcoming digital forensic challenges and available InfoVis tools are discussed. 

Chapter 3 outlines the methodology for obtaining forensic memory captures from 

Windows RAM images and the process for extracting digital artifacts using available 

open-source tools. The chapter also provides a functional overview of the visualization 

tool interface developed in this research. Chapter 4 performs analysis using the 

visualization tool on eight test datasets obtained from Windows XP Random-Access 

Memory (RAM) captures. The results are evaluated against the three research objectives 

for verification. 

The final chapter draws conclusions regarding the results of the research, and 

highlights the overall accomplishments of this study. Future research is proposed to 

improve upon the design implemented in the D3 JavaScript Visualization Tool. 

 

 

 

 

  



 

7 

II. Literature Review 

 

Due to the recent rise of computer crime, Digital Forensic Science has become an 

important subject for Law Enforcement Investigators. This chapter presents the process 

of digital forensics and highlights the specific field of Forensic Memory Analysis. 

Techniques for collecting Windows memory dumps are discussed along with available 

open-source tools for digital memory artifact extraction. The research presented in this 

paper focuses on overcoming the challenges related to digital forensic analysis through 

the application of Information Visualization. Previous related research is discussed and a 

popular visualization tool is explored. 

2.1 Digital Forensics 

 Cyber Crimes involving digital evidence are routinely investigated by law 

enforcement agencies. This field of analysis is commonly referred to as digital forensics, 

or digital forensic science. According to the United States Computer Emergency 

Readiness Team (US-CERT) digital forensics is defined as “the discipline that combines 

elements of law and computer science to collect and analyze data in a way that is 

admissible as evidence in a court of law” (US-CERT, 2008).  

 There are various subdivisions of digital forensics that are generally categorized 

under the following fields: 

1. Computer Forensics – the preservation, identification, extraction, documentation 

and interpretation of computer data (Kruse & Heiser, 2002). 



 

8 

2. Mobile Forensics – the analysis of digital evidence obtained from devices such as 

smartphones, cellphones, and PDAs (NIST, 2007). 

3. Network Forensics – the analysis of data collected from active computer network 

traffic to assist with intrusion detection, auditing, and monitoring (Palmer, 2001). 

4. Database Forensics – the study of databases and their associated metadata (Yadav, 

2011). 

A commonly held standard model of the digital forensics process comprising 

seven separate stages was developed by the Digital Forensic Research Workshop 

(Palmer, 2001). The U.S. Department of Justice (DOJ) currently follows the digital 

forensic model outlined below (Carroll, et al, 2008): 

1. Obtaining and Imaging Forensic Data 

2. Forensic Request 

3. Preparation/Extraction 

4. Identification 

5. Analysis 

6. Forensic Reporting 

7. Case Level Analysis 

 

 

Figure 1. Digital Forensic Process (Carroll, et al, 2008). 



 

9 

The visualization method described in Chapter 3 relates to the Analysis phase of the DOJ 

digital forensics process. Before analysis can be performed, collection of appropriate data 

must occur. For this reason, the collection and examination of digital evidence is 

discussed here. 

2.2 Sources of Digital Evidence 

 Digital evidence is defined by the Scientific Working Group on Digital Evidence 

(SWGDE) as “[i]nformation of probative value that is stored or transmitted in a binary 

form” (SWGDE, 2011). Computer hardware components which contain storage devices 

and have the potential to contain digital evidence include (NIJ, 2008): 

 Hard Drives – Internal and External 

 Removable Media – CDs, DVDs, Floppy Disks 

 USB Thumb Drives 

 Memory Cards – Secure Digital (SD) Cards, Compact Flash Cards 

 Handheld Devices – Smartphones, PDAs, Tablets, Digital Media Devices 

(Cameras, mp3 Players, iPods, etc.) 

Disk forensics collection methods applied to these devices can provide file-system data 

such as stored files and installed applications. Device physical memory can contain a 

wealth of information not found elsewhere (Carvey, 2009) but is omitted from this list. 

This is due to the volatile nature of memory where forensic collection requires careful 

measures to be taken in order to avoid altering the current state. Most incident response 

plans include the collection of volatile data (NIST, 2006). 



 

10 

2.3 Volatile Memory Forensics 

 Memory forensics involves analyzing a static memory image in order to 

determine the current state of the target system. This can be compared to taking a 

snapshot of the system memory for a particular instant in time. Live computer systems 

contain volatile data stored in Random-Access Memory (RAM). If power is no longer 

supplied to the system, the data stored in RAM is lost. Valuable information such as 

network connections, command history, and active process information resides solely in 

RAM (Carvey, 2009). Unique forensic artifacts relating to malware and rootkits reside in 

memory and cannot be discovered through hard disk forensic analysis (Davis, 2008). For 

this reason, the application of memory forensics techniques is critical to obtaining key 

digital evidence. 

2.4 Memory Acquisition 

 Before digital evidence can be obtained from the volatile memory, forensic 

examiners must acquire a physical memory dump (image) from the target device. For the 

purposes of this research, all target machines studied utilize the Microsoft Windows XP 

operating system. Therefore this section discusses the available tools and methods for 

extracting the contents of physical memory from Windows XP computer systems. 

Methods of volatile memory acquisition are categorized as either hardware-based or 

software-based and are discussed in the following sections. 

2.4.1 Hardware-Based Acquisition 

 A PCI expansion card called the Tribble was designed as a proof-of-concept 

device capable of accessing the contents of physical memory on a target computer 



 

11 

(Carrier, 2004). The acquisition is performed solely through hardware interaction without 

the need for software to be loaded onto the target. Unfortunately this method requires the 

Tribble card to be connected to the intended system prior to an event warranting forensic 

examination. For this reason, the Tribble is impractical for use in digital forensic 

investigations. 

Currently the most popular hardware-based option for live memory acquisition on 

Windows XP systems involves the use of an external Firewire (IEEE 1394) device. This 

method essentially bypasses the operating system because Firewire specifications allow 

client devices to directly access the host system’s memory (Burdach, 2006). An 

advantage to this technique is the high-speed data transfer rate (approximately 800 

Mbit/sec) obtained through a Firewire connection. 

2.4.2 Software-Based Acquisition 

There are many software-based approaches to volatile data collection which are 

compatible with the Windows XP operating system. Similar to the /dev/mem device in 

Unix operating systems, Windows XP provides RAM access by means of an object 

device (\\.\PhysicalMemory). The Unix based data dumper tool (dd) and the various open 

source versions ported for Windows systems have the ability to read from these memory 

devices and output the data to a local image file (Garnet, 2013). An additional option of 

dd allows the output file to be written to a server on the network (Carrier, 2004). Other 

open source tools for volatile memory acquisition similar to dd include Nigilant32, 

Win32dd, and Memoryze (Carvey, 2009). Win32dd was selected for use in this 

research as described in Chapter 3. 



 

12 

The fundamental disadvantage of memory image collection using software-based 

approaches relates to the modifications to the system state due to the collection program 

interactions with the operating system. Software used to extract the image has to be 

loaded into memory, thereby modifying data currently stored in RAM (Davis, 2008). A 

similar issue relates to the operations performed by the kernel during the acquisition 

process. Processor activity that occurs parallel to the collection process affects the output 

image and potentially overwriting digital evidence artifacts (Carvey, 2009). 

Unfortunately, with a software-based approach utilizing the system kernel is essential due 

to processor scheduling and the movement of data to storage (Carrier, 2004). 

2.5 Memory Dump Extraction Tools 

 The third phase of the DOJ digital forensics process model relates to the 

examination of collected data. With respect to memory forensics, this stage involves the 

application of forensic tools on raw memory dumps in an effort to extract digital evidence 

artifacts. 

2.5.1 Volatility Framework 

 Volatility is an open source advanced memory forensics framework released 

under the GNU General Public License. The framework is written in the Python scripting 

language and designed to analyze RAM dumps and extract specific digital artifacts. A 

variety of operating systems are supported including Windows, Linux, Mac OS X, and 

Android. The modular design of Volatility allows for the support of future operating 

systems and architectures. The Volatility Project community is comprised of researchers 



 

13 

and professionals operating in the fields of malware analysis, incident response, and 

digital forensics (Volatility, 2013). 

Members of the community develop individual module plugins for the framework 

and submit them to the project for general use. Plugins are organized into the following 

categories: 

 Image Identification 

 Processes and DLLs 

 Process Memory 

 Kernel Memory and Objects 

 Networking 

 Registry 

 Crash Dumps, Hibernation, and Conversion 

 File System 

 Miscellaneous 

Table 2 lists some of the most common modules designed for the Windows 

family of operating systems included in the most recent Volatility release (version 2.3.1). 

These are subsequently used in the research detailed in Chapter 3. 

  



 

14 

Table 2. Volatility (2.3.1) modules for Windows. 

 

 Analysis of physical memory images requires the identification of kernel 

structures and their specific locations. For Windows operating systems this involves 

obtaining the appropriate symbol files from the Microsoft Symbol Server (Microsoft, 

2014). These symbol files must then be converted to a format that can be interpreted by 

the Volatility framework. Volatility includes a bundle of prebuilt profiles for most 

Windows operating systems containing the appropriate symbol files relevant to the OS 

and particular architecture in a format the software can interpret (Volatility, 2013). 

The current release of Volatility (2.3.1) executes from a Windows command 

prompt using a standalone executable (see Figure 2). Plugin modules are run by 

following the command format below: 

“volatility-2.3.1.standalone .exe” vol.py –f [path to memory dump] 

--profile=[OSprofile] [module]  

The output can also be saved to a text file: 

“volatility-2.3.1.standalone .exe” vol.py –f [path to memory dump] 

--profile=[OSprofile] [module] > [path/filename].txt 

Module Plugin Description 

imageinfo 
Display identified operating system, service pack, and 

architecture 

connections 
Lists the TCP connections active at the time of memory 

acquisition 

handles Lists the open handles for all processes 

pslist List the active processes of the system 

sockets Lists the listening network sockets for any protocol 



 

15 

 

Figure 2. Volatility Command Prompt in Windows. 

 

2.5.2 Compiled Memory Analysis Tool (CMAT) 

 The Compiled Memory Analysis Tool (CMAT) is an alternative open source 

utility capable of analyzing and extracting data from Windows RAM dump images. 

CMAT is developed using C++ in contrast to the Volatility Framework which uses 

Python.  CMAT also requires access to the appropriate program database (PDB) symbol 

files from the Microsoft Symbol Server to identify the appropriate kernel structures and 

locations (Okolica & Peterson, 2011). Unlike Volatility, CMAT automatically obtains the 

correct symbol files from the Microsoft Symbol Server directly and does not require 

formatting. 

CMAT is executed from a command prompt in Windows (see Figure 3) using the 

following command format: 

cmat.exe  [dumpfile name] -data [path for output files] 

 

Output from CMAT is organized into six feature files as listed in Table 3. 

 



 

16 

 

Figure 3. CMAT Command Prompt in Windows. 

. 

Table 3. CMAT Output Feature Files. 

 

The feature files are placed in the specified output path. Figure 4 provides an example of 

the feature file contents. 

Feature 

File 
Data Details 

1 Process Information Process IDs, Process Names, User IDs 

2 Network Information 
Network connections active at time of 

memory acquisition 

3 Process Loaded Modules Loaded modules by Process ID 

4 Process File Handles Open Files by Process ID 

5 Process Registry Keys Registry Keys by Process ID 

6 System Loaded Modules System Drivers by Name 



 

17 

 

180 svchost.exe C:\WINDOWS\system32\svchost.exe 

180 kernel32.dll C:\WINDOWS\system32\kernel32.dll 

180 ADVAPI32.dll C:\WINDOWS\system32\ADVAPI32.dll 

180 RPCRT4.dll C:\WINDOWS\system32\RPCRT4.dll 

180 Secur32.dll C:\WINDOWS\system32\Secur32.dll 

180 ShimEng.dll C:\WINDOWS\system32\ShimEng.dll 

180 AcGenral.DLL C:\WINDOWS\AppPatch\AcGenral.DLL 

180 USER32.dll C:\WINDOWS\system32\USER32.dll 

180 GDI32.dll  C:\WINDOWS\system32\GDI32.dll 

180 WINMM.dll  C:\WINDOWS\system32\WINMM.dll 

180 ole32.dll  C:\WINDOWS\system32\ole32.dll 

180 msvcrt.dll C:\WINDOWS\system32\msvcrt.dll 

180 OLEAUT32.dll C:\WINDOWS\system32\OLEAUT32.dll 

180 MSACM32.dll C:\WINDOWS\system32\MSACM32.dll 

180 VERSION.dll C:\WINDOWS\system32\VERSION.dll 

 

Figure 4. CMAT Feature File Contents. 

 

2.6 Forensic Data Analysis 

 The Analysis phase of the NIST digital forensic process occurs after all relevant 

data is extracted from the target device. Forensic Analysts tackle the difficult task of 

inspecting the various tables of extracted data in an attempt to gain a perspective on the 

state of the system at the time of memory acquisition. In many cases, the objective is to 

discover hidden activity or unusual phenomena in the extracted datasets. 

2.6.1 Information Visualization 

 One proposed method of improving the Analysis process involves applying 

Information Visualization techniques to the forensic data. Humans tend to comprehend 

raw data more efficiently when it is presented in a visual form. Research has shown that 

people possess the skills to “visually interpret and comprehend pictures, video, and charts 

much faster than reading a textual description of the same” (Teerlink & Erbacher, 2006). 



 

18 

Shneiderman (1996) notes the human ability to “scan, recognize, and recall images 

rapidly” in addition to the natural capacity for identifying “changes in size, color, shape, 

movement, or texture.” 

  Ware (2004), a leading researcher in the applied science of Information 

Visualization, lists the following advantages to utilizing InfoVis: 

 Visualization provides an ability to comprehend huge amounts of data. 

 Visualization allows the perception of emergent properties that were not 

anticipated. 

 Visualization often enables problems with the data itself to become immediately 

apparent. A visualization commonly reveals things not only about the data itself, 

but about the way it is collected. 

 Visualization facilitates understanding of both large-scale and small-scale features 

of the data. 

 Visualization facilitates hypothesis formation. 

2.6.2 EIC Process 

 The Explore, Investigate, and Correlate (EIC) process (Osborne, 2012) stems 

from recent research applying Information Visualization to digital forensics. The process 

consists of a set of methods to overcome the issue of comprehending large and complex 

digital forensic datasets.  

 The specific goals of the EIC process model are as follows: 

 Make the evidence visible. 

 Reduce the relative size of the evidence. 



 

19 

 Provide high-level overviews of the evidence first. 

 Aid in the presentation of the events and relationships in the evidence. 

 Provide explanations of the origin or significance of evidence. 

 Provide support to help identify items of probative value. 

 Facilitate the presentation of these findings to other investigators or in 

court. 

In the Explore phase the human user is presented with a high-level overview of 

the data in its entirety. Through interactions with the visualization the user Investigates 

the data by applying filters or specifying a focus. The Correlate phase presents a low-

level view which highlights specific relationships within the data as well as behavior 

patterns. Figure 5 provides a flow-chart diagram of the EIC Process. The research did not 

include the development of new visualization methods, but instead focused on applying 

established techniques that are simplistic in nature. 

 

 



 

20 

 

Figure 5. EIC Process Flowchart (Osborne, 2012).

,.. 

Computational Space 

- - - --=--~-=-=--=-=-==-=-~==--=:!:" 

'- ... /',!'·" 

! 

<( VI••:~ ~·· ... 
.· \ 

( +---

I \ lte•d VisuM Data 

1 
Properties 

t 

Explore Phase 

Select Properties 
tobpklre 

.... 

Upct.te Curre.nt 
O.W.set 

Select Properties 
to Conel.te 

C""'w 
bP'cw.tive 

lnloVis 
Tec hnique 

j 
Eltplorative 

kl.foVis 
Techniques 

R.ende.r C ~I'll 
Vls.uMI:atlon 

·············· -~· ··· ·· ········ ·· ·· ··· ... 
Current 

Vis.uMz:atlon 
.,d Data 
Pf'oportiots 

C""'w 
COf!'ela.tlve 

lnloVis 
Tec hnique 

Correi.U. 
ln.foVis 

Techniques 

Correlate Phase 

\ 
I 
I 
) 

I 
I 
I 

) 

Perceptuat and Cognitive Space 

tntet'Ktions With 
Visu.,aization: 

Zoom. po~n. dick. «•9· delft, 
dcrtalls on demand. I.Wido, 

redo. 

r 
I 
I 
I , .. 
I 

• • 

•• 



 

21 

2.7 Visualization Tools 

Many tools exist for creating interactive visualization based on large datasets. Due 

to limited funding for this research the software packages explored in this section are 

limited to open-source libraries. Two of the most popular options are discussed here. 

 2.7.1 Gephi Visualization Software 

The Gephi software package is capable of providing interactive graphical 

visualizations of complex datasets (Gephi, 2014). Gephi is especially helpful in 

presenting network data with various hierarchical and clustering characteristics (Bastian, 

et al, 2009). The software is written in Java and utilizes the OpenGL library for rendering 

graphical content. Figures 6 provides an example of a weighted network visualization 

using Gephi illustrating the co-appearance of characters in the novel Les Miserables. 

 

Figure 6. Co-Appearance of Characters in Les Miserables (Gephi, 2014). 



 

22 

Another example of Gephi visualization is shown in Figure 7 below which depicts 

Twitter network data. 

 

Figure 7. Twitter Network Visualization (Gephi, 2014). 

 

2.7.2 D3 JavaScript Visualization 

Data-Driven Documents (D3) is a JavaScript library designed to manipulate 

interactive data through Hyper-Text Markup Language (HTML), Cascading Style Sheets 

(CSS), and Scalable Vector Graphics (SVG) inside a web browser. Data is bound to a 

Document Object Model (DOM) and transformed to display various visualizations. The 

D3 library is especially appropriate for visualizing digital forensic data considering its 

ability to support large datasets with a relatively small overhead (Bostock, 2014).  



 

23 

 Figure 8 shown below contains an example of a Bubble Chart visualization. This 

particular image depicts the frequency of words contained in the D3 JavaScript website 

homepage (www.d3js.org). Larger bubbles represent words that occur more often than 

others. 

 

Figure 8. Bubble Chart of D3 Homepage (Bostock, 2014). 

 

Figure 9 illustrates the political contributions for the 2012 Election Cycle using colored 

bubble nodes to represent the candidates and arc slices to represent each Political Action 

Committee (PAC). Bubble and path sizes are proportional to contribution amounts from 



 

24 

PACs to political candidates. Interaction with the visualization allows the user to explore 

datasets from both the House of Representatives and the U.S. Senate. 

 

 

Figure 9. Political Contributions 2012 Visualization (Brightpoint, 2014). 

 

Figure 10 provides a static image from another interactive visualization which details 

historical data from the National Association of Securities Dealers Automated Quotations 

(NASDAQ) stock exchange. This example demonstrates the ability of the D3 JavaScript 



 

25 

Library to portray multiple visualizations including histograms, bar charts, pie charts, and 

circle graphs in one interactive view. 

For the purposes of this research, the D3 JavaScript library was selected to create 

interactive visualization. The main advantage to utilizing D3 is its ability to run in most 

web browsers making the tool developed in Chapter 3 extremely portable. 

 

 

Figure 10. NASDAQ Interactive Chart (NASDAQ, 2014). 

2.8 Summary 

 This chapter described the process of digital forensics with an emphasis on the 

specific field of Forensic Memory Analysis. Topics discussed include the significance of 



 

26 

memory analysis, methods of acquiring RAM dumps from Windows computers, and 

open source memory artifact extraction tools. The applied science of Information 

Visualization is explored as a possible solution for overcoming some of the challenges 

associated with large and complex datasets. Both the Gephi software package and the D3 

JavaScript library are examined as potential interactive visualization tools. D3 is 

ultimately selected for use in this research due to its versatility and portability. 

  



 

27 

III. Methodology 

 Various open-source programs exists which are capable of extracting digital 

evidence from forensic memory dumps. While many of these tools provide textual output 

to the user, locating key information in the digital evidence proves challenging. With the 

increasing complexity of digital forensic collections, analysts find it difficult to 

understand the unique state of the system at the time of memory capture. This research 

applies Information Visualization techniques to the forensic memory analysis process by 

providing analysts with both global and local views of the extracted data. The interactive 

tool assists in identifying items of interest and recognizing behavior patterns in the data. 

This chapter describes the specific goals of the research as well as the design 

approach to achieving the outlined objectives. The process for obtaining forensic memory 

captures from Windows systems is discussed and the method of extracting digital 

artifacts is outlined. Additionally, the chapter provides the Information Visualization 

tools and techniques used to develop an interactive tool for forensic memory analysis. 

The basic functionality of the tool is covered in along with the specific features that 

provide unique visual support to the user. 

3.1 Research Objectives 

 The goal of this research is the development of a proof-of-concept model for 

visualizing data extracted from a forensic memory image. The specific objectives are 

outlined as follows: 

1. Represent multiple datasets extracted from a forensic memory image in an 

interactive visual with one universal view of the target system. 



 

28 

2. Filter a global dataset for a particular system and visually express the 

following associations: 

 The relationship between a specific system process and its associated 

resources. 

 The relationship between a specific system resource and its associated 

processes. 

3. Assist in the visual identification of unique patterns and new pieces of 

information from datasets. 

3.2 Assumptions 

Assumptions related to achieving the objectives include: 

1. Digital forensic methods exist for obtaining an accurate physical memory image. 

2. The extracted datasets under consideration for each system are limited to process 

lists, network connections, system services, open file handles, system registry 

keys, and loaded modules. 

3. The operating systems under consideration is limited to Microsoft Windows XP. 

3.3 System Design 

 

Figure 11. Forensic Memory Analysis Process. 



 

29 

Figure 11 illustrates the three step process for collecting, extracting, and 

analyzing forensic memory images. The primary focus of this research is the third step of 

the process which involves the development of a software tool capable of generating 

interactive visualizations from datasets extracted from Windows RAM dumps. The 

overall objective is to provide a functional system that is flexible enough to support 

future datasets from various operating system platforms and architectures. Additionally, 

the interface design should be simplistic and easy to use for both skilled and non-skilled 

Digital Forensic Analysts. The visualization tool should have the ability to operate on a 

range of workstation platforms used for forensic analysis. 

3.3.1 Memory Acquisition 

 Several Windows-based computers provide the source memory data for testing 

the visualization tool. Each machine is created and configured to produce unique process 

activity. The test computers are VMWare virtual machines. Table 4 contains a summary 

of the test machines and their configurations. Forensic memory dump acquisition is 

performed via a software-based approach by running win32dd on each machine. 

3.3.2 Malware Background 

This section provides specific background information regarding the two types of 

malware used in this research. The malware include FUTo and Poison Ivy, a Remote 

Administration Tool (RAT). 

Rootkits maintain access to a system by hiding their activity from the system user. 

The FUTo rootkit, for example, removes references to itself from the active process list 

data structures (Stevenson & Altholz, 2006). Unlike many rootkits that employ forms of  



 

30 

Table 4. Test Machine Configurations. 

 

 

API-hooking, FUTo uses Direct Kernel Object Manipulation (DKOM) to directly modify 

kernel structures including the PspCidTable (Silberman & C.H.A.O.S., 2005). 

Poison Ivy is a Remote Administration Tool piece of malware that can perform 

malicious activity such as “key logging, screen capturing, video capturing, file transfers, 

password theft, system administration, traffic relaying, and more” (Bennett, et al, 2013). 

Poison Ivy can also be configured to inject itself into a browser process. This allows the 

RAT to effectively bypass the firewall and make outgoing connections at will. 

Dataset Label Operating System Unique Process Activity 

WinXP IE Windows XP SP3 
Active Internet Explorer  

(v. 8.0.6001.18702) Process 

WinXP Chrome Windows XP SP3 
Active Google Chrome 

(v. 34.0.1847.131) Process 

WinXP Firefox Windows XP SP3 
Active Mozilla Firefox 

(v. 28.0) Process 

WinXP Solitaire Windows XP SP3 Active Solitaire Process 

WinXP Word Windows XP SP3 Active Microsoft Word Process 

WinXP Malware 1 Windows XP SP3 FUTo Malware hiding Solitaire Process 

WinXP Malware 2 Windows XP SP3 
Remote Administration Tool 

Malware (hidden) 

WinXP Malware 3 Windows XP SP3 
Remote Administration Tool Malware 

(hidden using different process) 



 

31 

3.3.3 Forensic Data Extraction 

 Each forensic memory image is processed by the Volatility Framework (discussed 

in Section 2.5.1) to extract digital artifacts. Table 5 lists the specific plugin modules 

executed on each memory dump file. The tool exports each dataset as a text file which is 

labeled according to content and source machine (i.e., Process_List_Chrome.txt, 

Connections_Firefox.txt). 

 The images are also processed using the CMAT utility (see Section 2.6.2) to 

extract data and generate the associated feature files. These feature files are compared 

against the Volatility output files for discrepancies in the data. Unfortunately both CMAT 

and Volatility lack the capability to extract data from a memory image relating to 

Running Services. For the purposes of this research, the information is obtained via the 

tasklist command-line tool included in Windows installations. The tool is executed 

at the time of memory acquisition in order to obtain a complete dataset. Sample output is 

depicted in Figure 12 below. Each listing is output to a text data file. 

 

Table 5. Volatility Plugins Executed on Test Images. 

 

Module Plugin Description 

connections View the TCP connections active at the time of memory acquisition 

handles Display the list of open handles for all processes 

pslist List the active processes of the system 

sockets View the listening network sockets for any protocol 



 

32 

C:\Users\Agent>tasklist /svc 

 

Image Name                     PID Services 

========================= ======== =================== 

System Idle Process              0 N/A 

System                           4 N/A 

smss.exe                       372 N/A 

csrss.exe                      504 N/A 

wininit.exe                    580 N/A 

csrss.exe                      604 N/A 

services.exe                   644 N/A 

lsass.exe                      664 KeyIso, Netlogon, SamSs 

lsm.exe                        696 N/A 

winlogon.exe                   744 N/A 

svchost.exe                    828 DcomLaunch, PlugPlay, Power 

nvvsvc.exe                     892 nvsvc 

nvSCPAPISvr.exe                916 Stereo Service 

svchost.exe                    960 RpcEptMapper, RpcSs 

MsMpEng.exe                    160 MsMpSvc 

svchost.exe                    592 AudioSrv, Dhcp 

Figure 12. tasklist Command-Line Output. 

 

3.3.4 Data Formatting 

 The extracted datasets for each Memory Dump require conversion from text files 

into the JSON format that can be used by the D3 JavaScript visualization software.  This 

is accomplished by importing each text file into a Microsoft Excel spreadsheet and 

subsequently exporting as a comma separated values (CSV) file. Because this research is 

a proof-of-concept, the design lacks an automated process for completing this task and 

must be performed manually. The correctly formatted CSV output files are directly 

imported into the Visualization tool described in the next section. 

3.3.5 Visualization Tool Design 

The tool developed in this thesis utilizes the D3 JavaScript visualization library to 

manipulate HTML, CSS, and SVG objects within a web environment. The advantage of 

utilizing JavaScript in an active web environment is the ability to use the visualization 



 

33 

tool on most web browsers. For testing purposes the tool is hosted locally through a 

simple Apache web server. 

 Table 6 contains a listing of the source files included in the visualization tool 

working directory along with brief descriptions of each resource. The main effort of this 

research involved writing and debugging the source files which contain approximately 

four thousand lines of JavaScript code. The only source file not authored in this research 

is the D3 JavaScript Library file. A sequence diagram outlining basic functionality of the 

developed visualization tool is depicted in Figure 13. 

Table 6. Visualization Tool Source Files. 

 

File Name Description 

index.html HTML source file 

globals.js Global variable definitions 

buttons.js Interactive button action definitions 

initialize.js Functions for initializing the interface 

update.js Functions for updating the visualization 

get.js Data accessor functions 

events.js Mouse click event functions 

d3.v3.min.js D3 JavaScript Library 

style.css File specifying CSS Style options 



 

34 

 

Figure 13. Visualization Tool Sequence Diagram.

* Actor 1 Sie<:d e t ataset 
~ 

I I . I I ;J 1.1: currentDataset() I I 
I I 
I I 

2: Click Fetch Data Button I I . 2.1: in~iaiFetch() 
! 

3: Click Initialize Button .. · ~ ... 3.1: setupHierarchy() .. 
3.2: in~ialize() ~~ 
3.3: u pdateNodes() 

--y .. I 
I ... 

3.4: u pdate(getResourcesOl! .. 3.4.1: getResources() ... .. ... 
..,.3.4.1.1: retum resouroelist ... 

4: Select a Process Node 
I I I I I .. 

1 ... 4.2: highlightNode() 
! 

... -
l,J..,. I 
1 ... 4.3: u pdate(getResources(PID)) 

4.1: onMouseCiick(node, "PROC") 

... 
4.3.1: getResources(PI D) ., 

I 

... 4.3.1.1: retum resouroelist ... 

+-... 
I 
I I I 
I I I 
I I I 

5: Sele<:t Resource Arc Slice1 I I I 

I I 5.2: highlightMatchingProcs(l . 
;J I y I I 

I I 

5.1: onMouseCiick(arc, "RESOURCE") 

I I I I 
I I I I 
I I I I 



 

35 

3.3.6 Visualization Tool Layout 

 Figure 14 provides a view of the main user-interface with outlines highlighting 

the three distinct regions of the interface. The top of the page contains a dataset selector 

menu and multiple buttons. The center main region contains the interactive visualization 

while the green pane on the right displays instruction and selected data details. 

 

 

Figure 14. Visualization Interface Layout. 

The interactive visualization region is divided into three major components (Figure 15): 

 Process Nodes – Hierarchical layout containing bubble nodes representing system 

processes. 

 Resource Arcs – System resource lists divided into arcs and color coded 

according to type which include File Handle, Key Handles, Loaded Modules, 

Services, Ports, and Sockets. 

Dataset 
Menu Function Buttons 

Interactive Visualization 
Region 

Instructions/ 
Details Pane 



 

36 

 Links – Colored links connecting resources and their associated process nodes. 

 

 

 

Figure 15. Visualization Region Components. 

Process Nodes 

Resource Arcs 

Links 



 

37 

3.4 Visualization Tool Functionality 

 This section provides steps detailing the basic functions of the visualization tool. 

3.4.1 Dataset Selection and Initialization 

The following steps are used to select and initialize datasets: 

1. Click the drop-down menu and select a dataset. 

2. Click the Fetch Data button to import the appropriate CSV data files. 

3. Click Initialize Data button to initiate the interactive visualization. 

3.4.2 Visualization Interaction 

The visualization tool is designed to follow a process flow similar to the Explore, 

Investigate, and Correlate (EIP) Process described in Chapter 2. Upon initialization, the 

visualization depicts a high-level global view of the system. The resource arcs are 

populated with a complete listing of system resources which the user can Explore by 

clicking to expand as shown in Figure 16. 

Interacting with the visualization allows the user to Investigate areas of interest by 

means of process node highlighting and resource arc slice filtering. The resulting local 

view provides a low-level perspective of the system by displaying the connections 

between processes and resources. By investigating areas of interest, the user discovers 

highlighted relationships within the datasets. This can be accomplished in three ways: 

1. Clicking on a Process Bubble Node (see Figure 17) 

 Process Node is highlighted. 

 Resource arcs are filtered to list files, keys, modules, services, ports, 

and sockets associated with the selected process. 



 

38 

2. Clicking on a Resource Slice (see Figure 18) 

 Process Nodes accessing selected resources are highlighted. 

3. Clicking the Apply Resource Filter button (see Figure 19) 

 Resource arcs are filtered to contain all open ports, open sockets, 

user files, and executable loaded modules for all system processes. 

 

The final feature of the visualization allows users to both highlight specific 

relationships as well as identify behavior patterns by overlaying colored links from an 

expanded list of resource slices to all related process nodes. This is accomplished by 

selecting the Toggle Links button at the top of the interface while in an expanded 

resource list view (i.e., currently viewing expanded Sockets List) as shown in Figure 20. 

This mechanism assists the user in discovering Correlations within the data through 

visual aids. 

Additional features of the visualization include: 

 Tooltips displaying process names on mouse over 

 Tooltips displaying full resource labels on mouse over 

 Process summary data displayed in green data details pane when 

node selected (see Figure 17) 



 

39 

 

Figure 16. Expanded Resource Arc – Sockets List. 



 

40 

 

 

 

 

Figure 17. Process Bubble Selected – Resource Arcs Filtered. 

 

  



 

41 

 

Figure 18. Resource Slice Selected – Associated Process Nodes Highlighted. 

... vice\Nam~~~~~~~~ffi~~iFr~)~~~ 

... vice\NamedPipe\net\NtControiPipe1 

... ice\NamedPipe\net\NtControiPipe1 0 

... ice\NamedPipe\net\NtControiPipe12 

... ice\NamedPipe\net\NtControiPipe13 

... vice\NamedPipe\net\NtControiPipe2 

... vice\NamedPipe\net\NtControiPipe3 

... vice\NamedPipe\net\NtControiPipe4 

... vice\NamedPipe\net\NtControiPipeS 

... vice\NamedPipe\net\NtControiPipe6 

... vice\NamedPipe\net\NtControiPipe 7 

... vice\NamedPipe\net\NtControiPipeS 

... vice\NamedPipe\net\NtControiPipe9 

\Device\NamedPipe\ntsvcs 

... evice\NamedPipe\protected_storag:e 

\Oevice\NamedPipe\scerpc 

\Oevice\NamedPipe\spoolss 

\Oevice\NamedPipe\srvsvc 
\Device\NamedPipe\trkw ks 

c:l W:..:..::..:inX:.::P--.:.=IE'--__ •...JI I FetchData I I Initia lize Data I I System View I I Apply Resource Filter I I Toggle links I 

\Oevice\win32dd 
\Oevice\vmci 

\Device\hgfs 

\Oevice\WebOavRedirector 

\Device\WI.11Data0evice 

\Device\WANARP 

\Device\Udp 

\Device\Termdd 

\Device\SystemRes tore 

\Device\Raw lp\47 

\Device\Raw lp\255 

\Oevice\NetbiosSmb 

\Device\NetBt_Wins_Export 

... 8437-A9A 0-4798-90AA-7276A219D 

\Oevice\NdisWan 

\Device\NdisTapi 

\Oevice\NamedPipe\wkssvc 

\Oevice\NamedPipe\winreg 
\Oevice\NamedPipe\winlog:onrpc 



 

42 

 

 

Figure 19. Apply Resource Filter Button Selected. 

 

  



 

43 

 

Figure 20. Links displayed – Sockets List Expanded. 

socket:l1664j 
socket 1666 

socket:[1667] 

socket:[1669) 

socket:[1670) 

socket:[1673) 

socket:[1675) 

socket:[1679) 

socket:[1682) 

socket:[1684) 

socket:[1686) 

socket:[1687] 

socket:[1689) 

socket:[1691) 

socket:[1693) 

socket:[1698) 

socket:[1703) 

socket:[1704) 

:~g~:rn fnJ 

Ll W_ i_nX_P_ IE ___ _,Y I I Fetch Data I I Initialize Data I System View I I App ly Resource Filter il l Toggle Links II 

socket: ISO D) 
socket: 4500) 

socket:[445) 

socket:[1900) 

socket:[1739) 

socket:[1737] 

socket:[1735) 

socket:[1734) 

socket:[1733) 

socket:[1732) 

socket:[1730) 

socket:[1729) 

socket:[1728) 

socket:[1727] 

socket:[1725) 

socket:[1723) 

socket:[1721) 

socket:[1718) 

socket l1712j 
socket: 1711 



 

44 

3.5 Summary 

This chapter outlined the research objectives and specific design approach to 

accomplishing those goals. The process for obtaining forensic memory captures from 

Windows machines is discussed along with the techniques used to extract digital artifacts 

from the dumps. The two types of malware that exist in the test memory dumps are 

reviewed to outline their basic behavioral characteristics.  

The last portion of the chapter provides a functional overview of the Visualization 

tool user interface. Basic features of the software are presented including the global 

system view and potential user interactions resulting in a more local view of the system. 

The addition of visual links to connect resources and associated processes assists the user 

in locating unique patterns and information of significance within the digital forensic 

datasets.



 

45 

IV. Analysis and Results 

In order to assess the abilities of the visualization tool developed in this research, 

test forensic memory images are created and acquired. The forensic memory analysis 

tools previously described are then executed to extract digital artifacts from the dumps. 

The resulting datasets are formatted using Microsoft Excel for import into the 

visualization tool. 

This chapter describes the application of the D3 JavaScript Visualization tool to 

various test datasets acquired from a number of Windows XP memory dumps. The results 

from each of the sample datasets are evaluated against the three research goals. The first 

goal involves providing a global view of the data that is extracted from forensic memory 

dumps using memory analysis tools. The second goal requires that the visualization tool 

possess the ability to filter the forensic datasets and highlight two types of relationships. 

These include the association between a process and its corresponding resources, and the 

connections between a particular resource and the processes accessing it. The third goal 

states that the visualization tool should contain features that assist the user in identifying 

unique patterns and interesting items within the datasets. Each objective is discussed in 

detail in the following sections. 

4.1 Goal 1: Global View of Data from Memory Analysis Tools 

 The first goal requires the visualization tool provide an interactive global view of 

the data output from forensic memory image analysis tools. Ultimately this visualization 

should allow the user to explore the entire set of available information extracted from a 

memory capture. 



 

46 

 The visualization tool meets this objective by: 

 Providing a global view of the target system based on the datasets 

extracted from the respective memory dump. 

 Populating the resource arcs with lists of complete system resources based 

on six categories (files, registry keys, loaded modules, services, ports, and 

sockets). 

 Allowing the user to explore the resources by expanding/reducing each 

resource arc slice. 

This goal is met by the full process hierarchy (node layout) and global resource listing 

(expandable arcs) as shown in Figure 21. For this particular dataset there are a total of 34 

processes, 374 unique file handles, 268 registry key handles, 349 loaded modules, 44 

active services, 3 open ports, and 15 open sockets which populate the visualization. 

 

 

 

Figure 21. Overall System View. 

Global View containing  
Full Process Node 
Hierarchy and Fully 
Populated Resource  
Arcs. 
 
 
 
Users explore full  
listing of global  
resources by expanding 

each colored arc. 



 

47 

4.2 Goal 2: Filter Data and Display Relationships 

 The second goal states that the visualization tool should possess the ability to 

filter the datasets and highlight the relationship between: 

 A single process and its associated resources (Figure 22) 

 A single resource and its associated processes (Figure 23) 

These goals are evidently satisfied as portrayed by the selected process and associated 

resource arcs (Figure 22) as well as the selected loaded module resource and associated 

processes (Figure 23). 

The purpose of this objective is to understand the behavior of the system by 

visualizing the low-level connections between objects. It is through this local view of the 

data that relevant information is discovered. 

4.3 Goal 3: Assist in Identifying New Data and Patterns 

 The third research goal states that the visualization tool should assist the user in 

identifying unique patterns and new pieces of information within the datasets. To verify 

this objective, each dataset contains unique process activity at the time of memory 

capture (see Table 4). There are two methods that can be applied to spot unique activity 

or new data: 

1. Toggle links to display multiple resource relationships (limited to single 

resource type) in one view. 

2. Compare trusted system visualization (containing only legitimate process 

activity) to an untrusted system visualization (containing a hidden process, 

rootkit, or other malware). 



 

48 

 

Figure 22. Visualization filtered for single process. 

 

  



 

49 

 

 

Figure 23. Visualization filtered for single resource.



 

50 

Four datasets are labeled as trusted systems running a single instance of a 

legitimate process while three other datasets contain some form of malware. The above 

methods are applied to evaluate the third overall research goal. 

4.3.1 Windows XP SP3 (Internet Explorer) – Trusted Image 

The first memory image consists of a single instance of Internet Explorer running 

on a Windows XP SP3 machine. Applying the unique resource filter provides a list of 

connections (ports and sockets), user files, and loaded modules. Clicking on the Socket 

and Port Resource arcs populates the resource ring with the respective resource lists. 

Using method 1 from above, toggling the links when viewing both lists produce 

visualizations that provides the user with some unique patterns (see Figures 24, 25). 

There are numerous connections surrounding one particular process, which upon 

examination is the IEXPLORER.EXE process running inside another instance of 

IEXPLORER.EXE.  

Filtering the global resource list by clicking the Apply Resource Filter button and 

selecting the red loaded modules arc slice populates the resource ring with the list of 

executable loaded modules. Toggling the links for this list provides another view (see 

Figure 26). By browsing this short list the user can identify the iexplorer.exe 

module and verify that it is loaded by the appropriate IEXPLORE.EXE process node. 



 

51 

 

Figure 24. IE – Socket List Links. 

s ocket:l1664j 
socket: 1666 

s ocket:[1667) 

socket:[1669) 

socket:[1670) 

socket:[1673) 

s ocket:[1675) 

socket:[1679) 

socket:[1682) 

socket:[1684) 

socket:[1686) 

socket:[1687] 

s ocket:[1689) 

socket:[1691) 

socket:[1693) 

s ocket:[1698) 

socket:[1703) 

s ocket:[1704) 

s ocket:l1705j 
socket: 1710 

c..:l W..cic.::nX..::.P...ci=E ___ T-'1 I Fetch Data I I Initialize Data I System View I I Apply Resource Filte r I I Toggle links I 

socket: ISO OJ 
s ocket: 4500) 

s ocket:[445) 

s ocket:[1900) 

s ocket:[1739) 

s ocket:[1737) 

s ocket:[1735) 

s ocket:[1734) 

s ocket:[1733) 

s ocket:[1732) 

s ocket:[1730) 

s ocket:[1729) 

s ocket:[1728) 

s ocket:[1727] 

s ocket:[1725) 

s ocket:[1723) 

s ocket:[1721) 

s ocket:[1718) 

s ocket:l1712j 
socket: 1711 



 

52 

 

Figure 25. IE – Port List Links. 

Port 1675 

Port 1679 

Port 1682 

Port 1684 

Port 1686 

Port 1687 

Port 1689 

Port 1691 

Port 1693 

Port 1698 

Port 1703 

Port 1704 

Port 1705 

Port 1710 

Port 1711 

c:l W:..:..::..:inX:.::P--.:.=IE'--__ •...JI I FetchData I I Initia lize Data I I System View I I Apply Resource Filter I I Toggle links I 

Port 1739 

Port 1737 

Port 1735 

Port 1734 

Port 1733 

Port 1732 

Port 1730 

Port 1729 

Port 1728 

Port 1727 

Port 1725 

Port 1723 

Port 1721 

Port 1718 

Port 1712 



 

53 

 

Figure 26. IE – Loaded Modules (.exe) Links.

c..:l W-"i""nX'-"P---=IE:__ __ _j• l I Fe1chDa1a I I Initialize Data I System View I I Apply Resource Filter I I Toggle Links I 

cmd.exe winlogon.exe 

ctfmon.exe win32dd.exe 

I iexplore.exe vmtools-d.exe 

service:s.exe vmacthtp.exe 

svchost.exe 



 

54 

4.3.2 Windows XP SP3 (Google Chrome) – Trusted Image 

The second memory image is from a Windows XP machine executing a single 

instance of Google Chrome. Applying the unique resource filter provides a list of 

connections (ports and sockets), user files, and loaded modules. Clicking on the Socket 

and Port Resource arcs populates the resource ring with the respective resource lists. 

Using method 1 and clicking the Toggle Links button when viewing each list provides the 

user with unique visualizations (see Figures 27, 28). The cluster of CHROME.EXE nodes 

can be identified by three socket connections, as well as the only three active open ports 

on the system.   

Filtering the global resource list by clicking the Apply Resource Filter button and 

selecting the red loaded modules arc slice populates the resource ring with the list of 

executable loaded modules. Toggling the links for this list provides another view (see 

Figure 29). By browsing this short list the user can identify the chrome.exe module 

and verify that it is loaded by the appropriate CHROME.EXE process node as indicated 

by the highlighted node cluster. 



 

55 

 

Figure 27. Chrome – Sockets List Links. 

socket:[O] 

socket:[1 028] 

socket:[1 030] 

socket:[123] 

socket:[135] 

socket:[137] 

socket:[138] 

socket:[139] 

I WinXP Chrome • I I Fetch Data I I Init ialize Data I System View I I Apply Resource Filter I I Toggle Links I 

socket:[500] 

socket:[4500] 

socket:[445] 

socket:[1900] 

socket:[1649] 

socket:[1648] 

socket:[1645] 



 

56 

 

Figure 28. Chrome – Ports List Links. 

I WinXP Chrome •I I FetchData I I Init ia lize Data I I System View I I Apply Resource Filter J J Togg le links I 

Port 1645 Port 1649 

Port 1648 



 

57 

 

Figure 29. Chrome – Loaded Modules (.exe) Links.

I WinXP Chrome • I I Fetch Data I ! Initia lize Data I System Vie w I I Apply Resource Filte r I I Toggle Links I 

alg.ex e w s.cntfy.ex e 

chrome.ex e winlogon.ex e 

cmd.ex e w in32dd.ex e 

csrss.ex e v mtools.d.ex e 

ctfmon.ex e vmacthlp.ex e 

lsass.ex e svchost.ex e 

ms.iex ec.ex e spoolsv.ex e 

msmsgs.ex e smss.ex e 

rundll32.ex e services .ex e 



 

58 

4.3.3 Windows XP SP3 (Mozilla Firefox) – Trusted Source 

The third trusted memory dump is from a Windows XP machine executing a single 

instance of Mozilla Firefox. Applying the unique resource filter provides a list of 

connections (ports and sockets), user files, and loaded modules. Clicking on the Socket 

and Port Resource arcs populates the resource ring with the respective resource lists. 

Applying method 1 and clicking the Toggle Links button when viewing each list provides 

the user with unique visualizations (see Figures 30, 31). An instance of PLUGIN-

CONTAINER.EXE is running inside a FIREFOX.EXE process node and can be 

identified by eleven socket connections, as well as the only eleven active open ports on 

the system.  

Filtering the global resource list by clicking the Apply Resource Filter button and 

selecting the red loaded modules arc slice populates the resource ring with the list of 

executable loaded modules. Toggling the links for this list provides another view (see 

Figure 32). By browsing this short list the user can identify the firefox.exe and 

plugin-container.exe modules and verify that they are loaded by the appropriate 

FIREFOX.EXE and PLUGIN_CONTAINER.EXE process nodes as indicated by the 

highlighted nodes. 



 

59 

 

Figure 30. Firefox – Socket List Links. 

socket:(O) 

socket:(1 028) 

socket:(1 030) 

socket:(123) 

socket:(135) 

socket:(137) 

socket:(138) 

socket:(139) 

socket:(1661) 

socket:(1662) 

socket:(1727) 
socket:(1758) 

c..:l W..:.:i::::nXc::.P...:Fc..:i:.:re:.:fo.:.:.x __ •--'1 I FetchData I I Initia lize Data I I System View I I Apply Resource Filter I I Togg le links I 

socket:(SOO) 

socket:(4SOO) 

socket:(445) 

socket:(21 06) 

socket:(2101) 

socket:(2089) 

socket:(1951) 

socket:(1925) 

socket:(1900) 

socket:(1784) 

socket:(1778) 



 

60 

 

Figure 31. Firefox – Port List Links. 

L[ W:..:..::_in::..:X:_P_:_F.::.ire::.:f::.:ox_:__•_J[ I Fetch Data I I Initialize Data I System View I I Apply Resource Filter I I Toggle Links I 

Port 1661 Port 2106 

Port 1662 Port 2101 

Port 1727 Port 2089 

Port 1758 Port 1951 

Port 1778 Port 1925 

Port 1784 



 

61 

 

Figure 32. Firefox – Loaded Modules (.exe) Links.

c..:l W..:.:i::::nXc::.P...:Fc..:i:.:re:.:fo.:.:.x __ •--'1 I FetchData I I Initia lize Data I I System View I I Apply Resource Filter I I Togg le links I 

cmd.exe win32dd.exe 

firefox.exe vmtoolsd.exe 

plu gin-container. exe svchc..st.exe 



 

62 

4.3.4 Windows XP SP3 (Solitaire) – Trusted Source 

The fourth trusted memory image is from a Windows XP machine executing a 

single instance of Solitaire. Again the unique resource filter provides a list of connections 

(ports and sockets), user files, and loaded modules. Clicking on the Socket Resource arc 

populates the resource ring with the respective resource list. Applying method 1 and 

clicking the Toggle Links button when viewing the socket list provides the user with the 

visualization in Figure 33, however, none of the sockets are connected to the SOL.EXE 

process. There are no open ports and therefore no associated unique visualization.  

Filtering the global resource list by clicking the Apply Resource Filter button and 

selecting the red loaded modules arc slice populates the resource ring with the list of 

executable loaded modules. Toggling the links for this list provides another view (see 

Figure 34). By browsing this short list the user can identify the sol.exe module and 

verify that they it is loaded by the appropriate SOL.EXE process as indicated by the 

highlighted node. 



 

63 

 

Figure 33. Solitaire – Socket List Links. 

I WinXP Solitaire • I I FetchData I I Initia lize Data I I System View I I App ly Resource Filter I I Togg le links I 

socket:(O) socket:(SOO) 

socket:(1 028) socket:(4500) 

socket:(123) socket:(445) 

socket:(135) socket:(1900) 

socket:(137) socket:(139) 

socket:(138) 



 

64 

 

Figure 34. Solitaire – Loaded Modules (.exe) Links.

I WinXP Solitaire • I I Fetch Data I I Initia lize Data I System View I I Apply Resource Filter I I Toggle Links I 

alg.exe wscntfy.exe 

cmd.exe winlogon.exe 

csrss.exe win32dd.exe 

ctfmon.exe vmtoolsd.exe 

lsass.exe vmacthlp.exe 

msmsgs.exe svchost.exe 

rundll32.exe spoolsv.exe 

services.exe ~ 
smss.exe 



 

65 

4.3.5 Windows XP SP3 (Word) – Trusted Source 

The fifth trusted memory image is from a Windows XP machine executing a 

single instance of Microsoft Word. The unique resource filter provides a list of sockets, 

user files, and loaded modules. There are no open ports in this dataset. The Word process 

is discovered by exploring the node layout as seen in Figure 35. Applying method 1 and 

clicking the Toggle Links button when viewing the files list provides the user with the 

visualization in Figure 36. This visualization lists many items including the open 

document (.docx), a Word template (Normal.dotm), a picture file (.jpeg), and various 

temp files. The combination of the .docx file residing in the users directory and the temp 

files reflects the fact that the document was in the process of being edited at the moment 

of memory capture. 

 One of the objectives for digital forensic practitioners is to gain an insight into the 

specific user activity on a target device through analysis of the collection data. This 

particular test dataset provides an example of how the interactive visualization could 

prove useful to an analyst in identifying specific document editing activity. The same 

technique could be used to locate other instances of user activity such as recent web 

browsing, email editing, social networking, peer-to-peer file exchanges, and multimedia 

viewing. This information is valuable to digital forensic investigators looking to develop 

an activity profile of the system user. 

  



 

66 

 

Figure 35. Word - Process Highlighted. 

Ll W'-'-"-'inX:..cP_ W.:..:...:.o:..crd __ •-'1 I FetchData I I Initialize Data I I System View I I Apply Resource Filter I I Toggle links I 

No Open Sockets Files 

No Open Ports Keys 

No Running Services Loaded Modules 



 

67 

 

Figure 36. Word – Files List.

c..:l W_:.:i::::nXc::.P_W:.:..::orc::.d __ •_,l I FetchData I I Initialize Data I I System View I 

... ts\Thesis_Draft_Baum_Revised.docx 

... ttings\Administrator\My Documen1s 

1898- 4566-A285-031084C3A8A7}.tmp I 

8138- 4 71A -AC38-2986EE 40F875}.tmp 

I Apply Resource Filter I I Toggle links I 

I 

I 

I ... a\Microsoft\Templates\Normal dotm T 

N< 

PII 

pp 

Tt 
... t Files\Content.I.!SO\F9482450.jpeg H c 

S t 

I ... -A501-4AOA -A E08-439708213A66} tmp I 

... -A98D-4DE5-83AF-94C7FE45626C}.tmp I 



 

68 

4.3.6 Windows XP SP3 (Malware 1) 

The sixth memory dump tested is from a Windows XP machine executing an 

instance of the FUTo malware. The unique resource filter provides a list of connections 

(ports and sockets), user files, and loaded modules. Clicking on the Socket Resource arc 

populates the resource ring with the respective resource list. Applying method 1 and 

clicking the Toggle Links button when viewing the socket list provides the user with the 

visualization in Figure 37. Although examination does not provide any immediate 

observations, comparison with previous trusted examples reveals a similarity with the 

Solitaire image in the socket list link layout pattern (see Figures 33, 37). Closer 

inspection uncovers the only difference, namely, the absence of a SOL.EXE process 

node in the malware sample. There are no open ports and therefore no associated unique 

visualization. 

The FUTo malware (discussed in Section 3.3.2) hides an active process by 

removing references to it in various kernel data structures. Since the process list extracted 

from memory is generated by walking these data structures, the hidden process will not 

appear as a node and instead exist as a loaded module attached to a system process. A 

review of the loaded modules for the System Idle Process reveals a sol.exe 

module connected to it (see Figure 38). Under normal circumstances, the System 

Idle Process would not load the Microsoft Solitaire program as a module. From this 

verification, there is sufficient evidence to categorize this as a potential implementation 

of  a rootkit. 



 

69 

 

Figure 37. Malware 1 – Socket List Links. 

I WinXP Malware 1 • I I Fe tchDa ta I I Initia lize Da ta I I Syste m Vie w I I Apply Resource Filte r I I Togg le links I 



 

70 

 

Figure 38. Malware 1 – Loaded Modules (.exe) Links.

I WinXP Malware 1 T I I Fetch Data I I Initialize Data I I System View I I Apply Resource Filter I I Toggle Links I 

s.ervices.exe spoolsv.exe 

smss.ex e B 



 

71 

4.3.7 Windows XP SP3 (Malware 2) 

This seventh dump image also has some form of malware operating on the system 

at the time of memory acquisition. Applying the unique resources filter and toggling the 

links for each resource list provides the views shown in Figures 39, 40, and 41 

respectively. 

Examination of the socket list with links does not seem to display any unique 

patterns or trends visually. The port list with links shows one active connection to a 

process named IEXPLORE.EXE. 

If method 2 is applied, this dataset should be compared to a similar trusted image. 

Since a process named IEXPLORE.EXE is listed it is compared to the trusted IE dataset 

from the previous section. 

A few observations can be made: 

 The single connection to IEXPLORE.EXE in the malware dataset differs from 

the numerous connections seen in the trusted dataset (see Figures 24, 25). 

 The iexplore.exe loaded module that appears in the trusted dataset appears 

differently in the Malware 2 set as IEXPLORE.EXE (see Figure 26). 

Using these observations it can be deduced that the malware in this dataset is probably 

masquerading as an instance of IE. In Section 3.3.2, the Poison Ivy Remote 

Administration Tool (RAT) is discussed as a form of malware. A key behavior of Poison 

Ivy is its ability to inject itself into a browser process. Considering the single connection 

to this process we can classify this as a potential RAT signature. 



 

72 

 

Figure 39. Malware 2 – Socket List Links. 

I WinXP Malware 2 • I I FetchData I I Initia lize Data I I System View I I Apply Resource Filter I I Toggle links I 



 

73 

 

Figure 40. Malware 2 – Port List Links. 

I WinXP Malware 2 • I I Fetch Data I I Init ialize Data I I System View I I Apply Resource Filter I I Toggle Links I 

Port 1314 



 

74 

 

Figure 41. Malware 2 – Loaded Modules (.exe) Links.

Explorer.EXE 

GoogleUpdate.ex e 

alg.ex e 

cmd.ex e 

csrss.ex e 

ctfmon.ex e 

lsass.ex e 

msmsgs .ex e 

rundll32.ex e 

[ WinXP Malware 2 • [ I Fetch Data I [ Initialize Data I System View I I Apply Resource Filter I I Toggle Links I 

w scntfy.exe 

w inlogon.ex e 

w in32d d-.ex e 

vmtoolsd.exe 

vrnacthlp.ex e 

svchost.exe 

spoolsv.ex e 

smss.ex e 

services.ex e 



 

75 

4.3.8 Windows XP SP3 (Malware 3) 

The final forensic memory image also contains malware operating on the system 

at the time of memory acquisition. Filtering for unique resources and toggling the links 

for each resource list provides the views shown in Figures 42, 43, and 44. 

Examination of the socket list visualization with links does not seem to display 

any unique patterns or trends. It does bear a close resemblance to the socket layout from 

the Malware 2 dataset (see Figure 39). The ports list, however, shows only one 

connection which is attached to an msmsgs.exe process node. The MSMSGS.EXE process 

appears in multiple datasets and appears to be a legitimate process but does not have any 

connections in any of the trusted samples (see Figure 45 from trusted Solitaire dataset). 

This observation coupled with the single connection reveals a pattern that can be treated 

as a possible instance of RAT malware similar to the Malware 2 dataset



 

76 

 

Figure 42. Malware 3 – Socket List Links. 

l WinXP Malware 3 • l I FetchData I I Initialize Data I System View I I Apply Resource Filter I I Toggle Links I 

socket:[G) socket:[SGG) 

socket:[1 G28) socket:[450G) 

socket:[1 G34) socket:[445) 

socket:[123) socket:[190G) 

socket:[135) socket:[139) 

socket:[137) socket:[138) 



 

77 

 

Figure 43. Malware 3 – Port List Links. 

I WinXP Malware 3 • I I Fetch Data I I Initialize Data I I System View I I Apply Resource Filter I I Toggle Links I 

PROCESS 

MSMSGS.EXE 

Port 1034 



 

78 

 

Figure 44. Malware 3 – Loaded Modules (.exe) Links. 

I WinXP Malware 3 T I I FetchData I I Initialize Data I I System View I I Apply Resource Filter I I Toggle Links I 



 

79 

 

Figure 45. Solitaire – MSMSGS.EXE process highlighted.

I WinXP Solitaire • I I FetchData I I Initialize Data I I System View I I Apply Resource Filter I I Toggle links I 

I No Open Sockets I Files 

PROCESS 

0 
MSMSGS.EXE 

No Open Ports Keys 

No Running Services Loaded Modules 



 

80 

4.4 Summary 

This chapter applies the D3 JavaScript Visualization tool to various test datasets 

extracted from a number of Windows XP memory dumps. The results from the eight 

sample datasets are evaluated against the three research goals outlined in Chapter 1. The 

first objective requires the developed visualization tool provide a global view of the data 

that is extracted from forensic memory dumps using memory analysis tools. The second 

goal expects the tool to possess the ability to filter datasets and highlight two key 

relationships within the data. The first is the relationship between a process and its 

associated resources, while the second is the relationship between a particular resource 

and its corresponding process nodes. The final objective of the research requires the 

visualization tool contain features that assist the user in locating behavior patterns and 

unique items of relevance within the datasets. 

 Five of the Windows memory captures contain legitimate (trusted) process 

activity while three datasets contain malware. Evaluation of the trusted datasets provides 

profiles of legitimate process activity that can be compared against malware datasets. By 

applying the features of the visualization tool, FUTo malware activity is located in the 

Malware 1 dataset while instances of the Poison Ivy Remote Administration Tool are 

detected in both the Malware 2 and Malware 3 datasets.  



 

81 

V.  Conclusions and Recommendations 

 The proof-of-concept visualization tool developed in this research is shown to 

provide a level of assistance to forensic investigators in the discovery of new data and 

existing patterns. The specific objectives for this research outlined in Chapter 1 are as 

follows: 

1. The visualization tool should provide an interactive global view of the data 

output from forensic memory image analysis tools. 

2. The visualization tool should have the ability to filter the datasets for a 

particular system and visually represent the following associations: 

 The relationship between each process and its associated resources. 

 The relationship between a system resource and its associated 

processes. 

3. The visualization tool should assist the user in locating unique patterns and 

information of relevance within the datasets. 

By addressing the overall problem statement and meeting the research objectives listed 

above, it can be implied that the thesis research is successful. 

5.1 Research Accomplishments 

 This research obtained forensic memory images from Windows XP machines and 

developed an interactive software tool that graphically represents the extracted datasets 

using Information Visualization techniques. Multiple systems containing forms of 

malware were analyzed using the developed visualization tool to discover specific 

behavior patterns and attempt to identify the type of malware. The visualization tool 



 

82 

created using D3 JavaScript is capable of running on virtually any platform due to its 

web-based design making it completely portable for use in the field. 

5.2 Future Work 

 One shortcoming of the visualization tool developed in this research is its 

limitation to a single data input format. The JavaScript source code for this project is 

specifically tailored to import data files that are in a particular format (CSV). One web 

blog describes a method of using an SQL database to generate datasets based on queries 

(D3noob, 2013). Streamlining both the collection and digital artifact extraction processes 

into one automated routine would improve the overall usability and increase the speed of 

analysis. 

 One potential method of improving the visualization and location of items of 

interest in large datasets could involve the whitelisting of trusted processes and resources. 

Placing less emphasis on trusted objects may help digital forensic analysts focus on the 

important data contained in a particular collection. 

 A useful addition to the visualization tool would involve the automatic detection 

of hidden processes similar to the FUTo and RAT malware discovered in Chapter 4. By 

understanding the behavior of certain process hiding mechanisms, the tool could filter 

and search the data to identify such cases and highlight the responsible process nodes and 

resources respectively. 

 While the eight datasets tested in this research utilize the Window XP operating 

system, the visualization tool can also be applied to datasets from Windows 7 forensic 

memory images as shown in Figure 46. CMAT is used to perform the extraction of digital 



 

83 

artifacts from the dump due to the limited number of Volatility plugin modules currently 

compatible with Windows 7 architecture. 

The digital forensic visualization methods used in this research can also be ported 

to various operating systems including Mac OS X, Linux, and Android.  A prototype 

model for an Android 4.3 memory dump was developed during the course of this 

research but includes a limited feature set. Figure 47 contains a screen capture of the 

Android process node layout. Since both Android and Linux are fairly similar in 

architecture, it would appear fairly simple to modify the system to accept datasets from 

both operating systems. 



 

84 

 

 

 

Figure 46. Windows 7 Dataset Visualization. 

 

 

  



 

85 

 

 

Figure 47. Android 4.3 Dataset Visualization (Prototype).



 

86 

Bibliography 

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for 

Exploring and Manipulating Networks. Proceedings of the Third International 

ICWSM Conference, 361-362.  

Beebe, N., & Clark, J. (2005). Dealing With Terabyte Data Sets In Digital Investigations. 

Advances in Digital Forensics: IFIP International Conference on Digital Forensics, 

vol. 194, 3-16. 

Bennett, J., Moran, N., & Villeneuve, N. (2013). FireEye Poison Ivy Report. 

http://www.fireeye.com/resources/pdfs/fireeye-poison-ivy-report.pdf 

Bostock, M. (2014). D3 Documentation Wiki. Internet. https://github.com/mbostock/ 

d3/wiki 

Brightpoint Inc. (2014). Political Influence D3 Visualization. Internet. 

http://www.brightpointinc.com/interactive/politicalinfluence/index.html?source=d3js 

Burdach, M. (2006). Physical Memory Forensics [slides]. Black Hat Federal. 

https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Burdach.pdf 

Cai, L., Sha, J., & Qian, W. (2013). Study on Forensic Analysis of Physical Memory. 2
nd

 

International Symposium on Computer, Communications, Control, and Automation, 

221-224. 

Carrier, B., & Grand, J. (2004). A Hardware-Based Memory Acquisition Procedure for 

Digital Investigations. Journal of Digital Investigations, 1(1), 50-60.  

Carroll, O., Brannon, S., & Song, T. (2008). Computer Forensics: Digital Forensic 

Analysis Methodology. Computer Forensics, 56(1), United States Department of 

Justice.  http://www.justice.gov/usao/eousa/foia_reading_room /usab5601.pdf 

Carvey, H. (2009). Windows Forensic Analysis DVD Toolkit 2
nd

 ed. Burlington MA: 

Syngress. 

D3noob. (2013, February 8). Using a MYSQL database as a source of data. Message 

posted to http://www.d3noob.org 

Davis, N. (2008). Live Memory Acquisition for Windows Operating Systems: Tools and 

Techniques for Analysis. Thesis. Eastern Michigan University.  



 

87 

Faisal, S., Blandford, A., & Potts, H. W. (2013). Making sense of personal health 

information: Challenges for information visualization. Health Informatics Journal, 

19(3), 198-217.   

Federal Bureau of Investigation. (2014). Cyber Fact Sheet. Cyber Crime. 

http://www.fbi.gov/about-us/investigate/cyber/ 

Garfinkel, S. (2010). Digital forensics research: The next 10 years. Digital Forensic 

Research Workshop (DFRW), 7(S), S64-S73. 

Garner, G. (2013). Forensic Acquisition Tools. Internet. http://gmgsystemsinc.com/fau/ 

Gephi. (2014). The Open Graph Viz Platform. Internet. https://gephi.org  

Henehan, B., Johas-Teener, M., Scholles, M., & Thompson, D. (2006). 1394 Standards 

and Specifications Summary [slides]. 1394 Trade Association. 

http://www.1394ta.org/developers/specifications/StandardsOrientationV5.0.pdf 

Keim, D. (2002). Information Visualization and Visual Data Mining. IEEE Transactions 

on Visualization and Computer Graphics. 8(1), 1-8. 

Kruse, W., & Heiser, J. (2002). Computer Forensics: Incident Response Essentials. 

Addison Wesley Publishing. 

Liu, S., Cui, W., Wu, Y., & Liu, M. (2014). A Survey on Information Visualization: 

Recent Advances and Challenges. The Visual Computer, 30(1), 1-21. 

Microsoft Corporation. (2014). Use the Microsoft Symbol Server to obtain debug symbol 

files. Internet. http://support.microsoft.com/kb/311503 

NASDAQ Demo. (2014). Dimensional Charting JavaScript Library. Internet. 

http://nickqizhu.github.io/dc.js/ 

National Institute of Justice. (2008). Electronic Crime Scene Investigation: A Guide for 

First Responders, Second Edition. Washington, D.C. 

National Institute of Standards and Technology. (2007). Guidelines on Cell Phone 

Forensics. (NIST Special Publication 800-101). Gaithersburg, MD. 



 

88 

National Institute of Standard and Technology. (2006). Guide to Integrating Forensic 

Techniques into Incident Response. (NIST Special Publication 800-86). Gaithersburg, 

MD. 

Okolica, J., & Peterson, G.L. (2010). Windows systems agnostic memory analysis. 

Digital Investigation: The International Journal of Digital Forensics & Incident 

Response, 7(1), S48-S56. 

Okolica, J., & Peterson, G.L. (2011). Extracting Forensic Artifacts From Windows O/S 

Memory. Technical Report. Air Force Institute of Technology. 

Osborne, G. (2012). The Explore, Investigate, and Correlate Process for Information 

Visualisation in Digital Forensics. PhD dissertation. University of South Australia. 

Palmer, G. (2001). A Road Map for Digital Forensic Research. First Digital Forensic 

Research Workshop (DFRWS). http://www.dfrws.org/2001/dfrws-rm-final.pdf 

Russinovich, M., & Solomon, D. (2005). Microsoft Windows Internals Fourth Edition. 

Redmond, WA. Microsoft Press. 

Scientific Working Group on Digital Evidence. (2011). SWGDE and SWGIT Digital & 

Multimedia Evidence Glossary. https://www.swgde.org/documents/Archived%20 

Documents/2011-01-14_SWGDE-SWGIT_Glossary_v2_4.pdf 

Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for 

Information Visualizations. Proceedings of the IEEE Symposium on Visual 

Languages, 336-343. 

Silberman, P., & C.H.A.O.S, (2005). FUTo. Uninformed.  http://uninformed.org 

/?v=3&a=7&t=sumry 

Stevenson, L., & Altholz, N. (2006). Rootkits for DUMMIES. Wiley Publishing, Inc. 

Teerlink, S., & Erbacher, R. F. (2006). Improving the Computer Forensic Analysis 

Process Through Visualization. Communications of the ACM, 49(2), 71-75. 

United States Computer Emergency Readiness Team. (2008). Computer Forensics. 

https://www.us-cert.gov/sites/default/files/publications/forensics.pdf 

Volatility Development Team. (2013). Volatility: An Advanced Memory Forensics 

Framework. Internet. https://code.google.com/p/volatility/ 



 

89 

Ware, C. (2004). Information Visualization: Perception for Design (2
nd

 ed.). San 

Francisco, CA. Elsevier. 

Yadav, S. (2011). Analysis of Digital Forensic and Investigation. VSRD International 

Journal of Computer Science & Information Technology 1(3), 171-178. 

  



 

90 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty 
for failing to comply with a collection of information if it does not display a currently valid OMB control number.   

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

12-06-2014 
2. REPORT TYPE  

Master’s Thesis  

3. DATES COVERED (From – To) 

September 2012 – June 2014 

TITLE AND SUBTITLE 

 
WINDOWS MEMORY FORENSIC DATA VISUALIZATION 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 

Baum, James B., Civilian, USAF 

 

5d.  PROJECT NUMBER 
 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 

  Air Force Institute of Technology 

 Graduate School of Engineering and Management (AFIT/EN) 

 2950 Hobson Way, Building 640 

 WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

     AFIT-ENG-T-14-J-1 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Intentionally Left Blank 

 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

     APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

13. SUPPLEMENTARY NOTES   
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 

14. ABSTRACT  

Modern criminal investigators face an increasing number of computer-related crimes that require the application of digital 

forensic science. The major challenge facing digital forensics practitioners is the complicated task of acquiring an 

understanding of the digital data residing in electronic devices. Currently, this task requires significant experience and 

background to correctly aggregate the data their tools provide from the digital artifacts. Most of the tools available present 

their results in text files or tree lists. It is up to the practitioner to mentally capture a global understanding of the state of the 

device at the time of seizure and find the items of evidentiary interest. This research focuses on the application of Information 

Visualization techniques to improve the analysis of digital forensic evidence from Microsoft Windows memory captures. The 

visualization tool developed in this work presents both global and local views of the evidence based on user interactions with 

the graphics. The resulting visualizations provide the necessary details for verifying digital artifacts and assists in locating 

additional items of relevance. This proof-of-concept model can be modified to support various digital forensic target 

platforms including Mac OS X, Linux, and Android. 

15. SUBJECT TERMS 

       Digital Forensics, Memory Analysis, Information Visualization, Windows XP, Interactive Tool, D3 JavaScript 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 
OF  
     ABSTRACT 

 

UU 

18. 
NUMBER  
OF PAGES 
 

101 

19a.  NAME OF RESPONSIBLE PERSON 

Peterson, Gilbert L., PhD, AFIT/ENG 
a. REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 

U 

19b.  TELEPHONE NUMBER (Include area code) 

(937) 255-6565, ext 4281   (gilbert.peterson@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


